Code: CS3T1

II B.Tech - I Semester – Regular/Supplementary Examinations November - 2019

DISCRETE MATHEMATICS (COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours Max. Marks: 70

PART - A

Answer *all* the questions. All questions carry equal marks

 $11x\ 2 = 22\ M$

- 1. a) Obtain the Truth table for $(\neg P \lor Q) \lor (\neg P \land \neg R)$
 - b) Give the converse and contra positive of the implication of the statement "If it is raining then I get wet".
 - c) Predicate statements are more specific than propositional statements? Justify it with an example?
 - d) Define the quantifiers that are applicable in predicate calculus?
 - e) Define complete lattice and complement lattice?
 - f) Draw the hasse diagram of (x, \le) , where $X = \{2,3,6,12,24,36,48,64,72\}$ and the relation \le be such that $x \le y$ if x divides y.
 - g) Find the DFS and BFS sequence of the following graph(S is the starting vertex).

Page 1 of 4

- h) Define the following graph with examples
 - i) Cycle graph
 - ii) Complete graph
- i) Verify the following graph is planar or not

- j) Find the number of spanning trees that are formed for the complete graph with 4 vertices.
- k) Show that the chromatic number of complete bipartite graph $k_{m,n}$ is 2.

PART - B

Answer any *THREE* questions. All questions carry equal marks. $3 \times 16 = 48 \text{ M}$

- 2. a) Explain about tautology of statement formulas? Prove the following statement formulas.8 M
 - i) $((P \lor Q) \land \neg (\neg P \land (\neg Q \lor \neg R))) \lor (\neg P \lor \neg Q) \lor (\neg P \land \neg R)$ is a tautology
 - $ii) \quad \neg (P \lor Q) \to (\neg P \lor (\neg P \lor Q)) \Leftrightarrow (\neg P \lor Q)$
 - b) Explain about implications of statement formulas and prove the following implications without using truth tables.8 M

i)
$$(\neg P \land \neg Q) \Rightarrow \neg (P \land Q)$$

ii)
$$(P \rightarrow (Q \rightarrow R)) \Rightarrow (P \rightarrow Q) \rightarrow (P \rightarrow R)$$

- 3. a) Solve and show that ${}^{R \wedge (P \vee Q)}$ is a valid inference from the premises ${}^{P \vee Q}$, ${}^{Q \rightarrow R}$, ${}^{P \rightarrow M}$, $\neg M$. 8 M
 - b) By using proper predicates and quantifiers, show the following statements in terms of predicate formulas 8 M
 - i) All men are mortal
 - ii) Some roses are yellow
 - iii) All Russians are taller than all Americans
 - iv) Some monkeys have no tail
- 4. a) Identify, which of the partially ordered sets (hasse diagrams) are lattices(with explanation) 8 M

- b) Draw the hasse diagram for the P(S), is the power set of S and \subseteq and \supseteq are taken as subset and superset. Where $S = \{a, b, c\}$
- 5. a) Using Prim's algorithm find a minimal Spanning tree for the Weighed graph shown below8 M

b) Define the concept of isomorphism of two graphs? Find the below graphs are isomorphic or not 8 M

- 6. a) Define Eulerian and Hamiltonian Graphs, draw the graphs
 - i) Eulerian but not Hamiltonian
 - ii) Hamiltonian but not Eulerian
 - iii) Either Eulerian or Hamiltonian
 - iv) Neither Eulerian nor Hamiltonian

8 M

b) Define the chromatic number and find the chromatic number of the following graphs

8 M

